Resolvent estimates in controllability theory and applications to the discrete wave equation

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Applications of Cutoff Resolvent Estimates to the Wave Equation

We consider solutions to the linear wave equation on non-compact Riemannian manifolds without boundary when the geodesic flow admits a filamentary hyperbolic trapped set. We obtain a polynomial rate of local energy decay with exponent depending only on the dimension.

متن کامل

Uniform boundary controllability of a discrete 1-D wave equation

A numerical scheme for the controlled discrete 1-D wave equation is considered. We prove the convergence of the boundary controls of the discrete equations to a control of the continuous wave equation when the mesh size tends to zero when time and space steps coincide. This positive result is in contrast with previous negative ones for space semi-discretizations.

متن کامل

Wave propagation theory in offshore applications

A frequency-wavenumber-domain formulation is presented in this paper for calculation of the Green's functions and wave propagation modes in a stratified fluid body underlain by a layered viscoelastic soil medium. The Green's functions define the solid and fluid displacements and fluid pressures due to uniform disk loads acting in either the soil or fluid media. The solution is in the frequency ...

متن کامل

Cutoff Resolvent Estimates and the Semilinear Schrödinger Equation

This paper shows how abstract resolvent estimates imply local smoothing for solutions to the Schrödinger equation. If the resolvent estimate has a loss when compared to the optimal, non-trapping estimate, there is a corresponding loss in regularity in the local smoothing estimate. As an application, we apply well-known techniques to obtain well-posedness results for the semi-linear Schrödinger ...

متن کامل

Estimates for the Dirichlet-wave Equation and Applications to Nonlinear Wave Equations

We shall mainly concern ourselves with the physically important case where the spatial dimension n equals 3. It is considerably easier to prove estimates for the wave equation in odd-spatial dimensions in part because of the fact that the sharp Huygens principle holds in this case for solutions of the boundaryless wave equation in Minkowski space R+×R. By this we mean that if v solves the Minko...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journées Équations aux dérivées partielles

سال: 2009

ISSN: 0752-0360

DOI: 10.5802/jedp.55